Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Artigo em Inglês | MEDLINE | ID: mdl-36011823

RESUMO

The intestinal microbiota plays an important role in the immune response against viral infections, modulating both innate and adaptive immune responses. The cytokine storm is associated with COVID-19 severity, and the patient's immune status is influenced by the intestinal microbiota in a gut-lung bidirectional interaction. In this study, we evaluate the intestinal microbiota of Brazilian patients in different post-COVID-19 periods, and correlate this with clinical data and the antibiotic therapy used during the acute phase. DNA extracted from stool samples was sequenced and total anti-SARS-CoV-2 antibodies and C-reactive protein were quantified. Compared with controls, there were significant differences in the microbiota diversity in post-COVID-19 patients, suggesting an intestinal dysbiosis even several months after acute disease resolution. Additionally, we detected some genera possibly associated with the post-COVID-19 dysbiosis, including Desulfovibrio, Haemophillus, Dialister, and Prevotella, in addition to decreased beneficial microbes, associated with antibiotic-induced dysbiosis, such as Bifidobacterium and Akkermansia. Therefore, our hypothesis is that dysbiosis and the indiscriminate use of antibiotics during the pandemic may be associated with post-COVID-19 clinical manifestations. In our study, 39% (n = 58) of patients reported symptoms, including fatigue, dyspnea, myalgia, alopecia, anxiety, memory loss, and depression. These data suggest that microbiota modulation may represent a target for recovery from acute COVID-19 and a therapeutic approach for post-COVID-19 sequelae.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Doença Aguda , Disbiose/microbiologia , Humanos , Pandemias
5.
J Clin Rheumatol ; 28(2): e568-e573, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030162

RESUMO

ABSTRACT: Gastrointestinal (GI) involvement is an early manifestation in systemic sclerosis (SSc), affecting more than 90% of patients, and severe GI disease is a marker of poor prognosis and mortality. Recent studies have hypothesized that alterations of the intestinal microbiota, known as dysbiosis, may represent 1 of the possible environmental factors influencing SSc disease status. In addition, specific microorganisms may be associated with SSc pathogenesis, progression, and GI manifestations. Therapeutic approaches aiming to modulate the intestinal microbiota have emerged, as alternatives to treat GI symptoms, and dietary interventions, probiotic administration, and fecal microbiota transplantation are potential therapies for SSc patients. However, given the complexity and variability of pathogenesis and clinical manifestations in SSc, these therapies need to be combined with additional interventions that target other disease components. Here, we summarize studies addressing intestinal dysbiosis in SSc and discuss the potential of microbiota modulators to treat SSc-related GI disorders.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Escleroderma Sistêmico , Disbiose/complicações , Disbiose/terapia , Gastroenteropatias/diagnóstico , Gastroenteropatias/etiologia , Gastroenteropatias/terapia , Humanos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico , Escleroderma Sistêmico/terapia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33925359

RESUMO

Dysbiosis, associated with barrier disruption and altered gut-brain communications, has been associated with multiple sclerosis (MS). In this study, we evaluated the gut microbiota in relapsing-remitting patients (RRMS) receiving disease-modifying therapies (DMTs) and correlated these data with diet, cytokines levels, and zonulin concentrations. Stool samples were used for 16S sequencing and real-time PCR. Serum was used for cytokine determination by flow cytometry, and zonulin quantification by ELISA. Pearson's chi-square, Mann-Whitney, and Spearman's correlation were used for statistical analyses. We detected differences in dietary habits, as well as in the gut microbiota in RRMS patients, with predominance of Akkermansia muciniphila and Bacteroides vulgatus and decreased Bifidobacterium. Interleukin-6 concentrations were decreased in treated patients, and we detected an increased intestinal permeability in RRMS patients when compared with controls. We conclude that diet plays an important role in the composition of the gut microbiota, and intestinal dysbiosis, detected in RRMS patients could be involved in increased intestinal permeability and affect the clinical response to DTMs. The future goal is to predict therapeutic responses based on individual microbiome analyses (personalized medicine) and propose dietary interventions and the use of probiotics or other microbiota modulators as adjuvant therapy to enhance the therapeutic efficacy of DMTs.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Bacteroides , Brasil , Disbiose , Humanos , Permeabilidade
8.
Front Immunol ; 12: 579140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746942

RESUMO

Hashimoto thyroiditis (HT) is the most common autoimmune disease worldwide, characterized by chronic inflammation and circulating autoantibodies against thyroid peroxidase and thyroglobulin. Patients require hormone replacement with oral levothyroxine, and if untreated, they can develop serious adverse health effects and ultimately death. There is a lot of evidence that the intestinal dysbiosis, bacterial overgrowth, and increased intestinal permeability favor the HT development, and a thyroid-gut axis has been proposed, which seems to impact our entire metabolism. Here, we evaluated alterations in the gut microbiota in Brazilian patients with HT and correlated this data with dietary habits, clinical data, and systemic cytokines and zonulin concentrations. Stool samples from 40 patients with HT and 53 controls were analyzed using real-time PCR, the serum cytokine levels were evaluated by flow cytometry, zonulin concentrations by ELISA, and the dietary habits were recorded by a food frequency questionnaire. We observed a significant increase (p < 0.05) in the Bacteroides species and a decrease in Bifidobacterium in samples of patients with HT. In addition, Lactobacillus species were higher in patients without thyroid hormone replacement, compared with those who use oral levothyroxine. Regarding dietary habits, we demonstrated that there are significant differences in the consumption of vegetables, fruits, animal-derived proteins, dairy products, saturated fats, and carbohydrates between patients and control group, and an inverse correlation between animal-derived protein and Bacteroides genus was detected. The microbiota modulation by diet directly influences the inflammatory profile due to the generated microbiota metabolites and their direct or indirect action on immune cells in the gut mucosa. Although there are no differences in systemic cytokines in our patients with HT, we detected increased zonulin concentrations, suggesting a leaky gut in patients with HT. These findings could help understand the development and progression of HT, while further investigations to clarify the underlying mechanisms of the diet-microbiota-immune system axis are still needed.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Doença de Hashimoto/imunologia , Intestinos/imunologia , Adulto , Bactérias/classificação , Bactérias/genética , Citocinas/sangue , Citocinas/imunologia , Citocinas/metabolismo , Disbiose/microbiologia , Fezes/microbiologia , Comportamento Alimentar , Feminino , Haptoglobinas/imunologia , Haptoglobinas/metabolismo , Doença de Hashimoto/sangue , Doença de Hashimoto/microbiologia , Humanos , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Precursores de Proteínas/sangue , Precursores de Proteínas/imunologia , Precursores de Proteínas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Front Immunol ; 12: 635471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717181

RESUMO

COVID-19 is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and according to the World Health Organization (WHO), to date, SARS-CoV-2 has already infected more than 91.8 million people worldwide with 1,986,871 deaths. This virus affects mainly the respiratory system, but the gastrointestinal tract (GIT) is also a target, meanwhile SARS-CoV-2 was already detected in oesophagus, stomach, duodenum, rectum, and in fecal samples from COVID-19 patients. Prolonged GIT manifestations in COVID-19, mainly the diarrhea, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed SARS-CoV-2 clearance. So, the bidirectional interactions between the respiratory mucosa and the gut microbiota, known as gut-lung axis, are supposed to be involved in the healthy or pathologic immune responses to SARS-CoV-2. In accordance, the intestinal dysbiosis is associated with increased mortality in other respiratory infections, due to an exacerbated inflammation and decreased regulatory or anti-inflammatory mechanisms in the lungs and in the gut, pointing to this important relationship between both mucosal compartments. Therefore, since the mucous membranes from the respiratory and gastrointestinal tracts are affected, in addition to dysbiosis and inflammation, it is plausible to assume that adjunctive therapies based on the modulation of the gut microbiota and re-establishment of eubiosis conditions could be an important therapeutic approach for constraining the harmful consequences of COVID-19. Then, in this review, we summarized studies showing the persistence of SARS-CoV-2 in the gastrointestinal system and the related digestive COVID-19 manifestations, in addition to the literature demonstrating nasopharyngeal, pulmonary and intestinal dysbiosis in COVID-19 patients. Lastly, we showed the potential beneficial role of probiotic administration in other respiratory infections, and discuss the possible role of probiotics as an adjunctive therapy in SARS-CoV-2 infection.


Assuntos
COVID-19/microbiologia , Intestinos/microbiologia , Pulmão/microbiologia , SARS-CoV-2/fisiologia , COVID-19/terapia , Disbiose , Microbioma Gastrointestinal , Humanos , Intestinos/virologia , Pulmão/virologia , Probióticos
10.
Crit Rev Food Sci Nutr ; 61(2): 337-355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32156153

RESUMO

Obesity is currently considered a global epidemic and it leads to several alterations on the human body and its metabolism. There are evidences showing that the intestinal microbiota can influence on the pathogenesis of obesity. Microbiota plays a vital role not only in the digestion and absorption of nutrients, but also in the homeostatic maintenance of host immunity, metabolism, and gut barrier. Its dietary alteration is an important target in the treatment of obesity. Emerging evidence suggests that modifying the composition of the gut microbiota through probiotic, prebiotic, and synbiotic supplementation may be a viable adjuvant treatment option for obese individuals. In this review, the impact of probiotics, prebiotics, and synbiotics on the anthropometric profile, biochemical regulation, clinical, and immunological markers, as well as on the gut microbiota of obese hosts is described. It also emphasizes how changes in the composition and/or metabolic activity of the gut microbiota through the administration of nutrients with probiotic, prebiotic, or synbiotic properties can modulate the host's gene expression and metabolism, and thereby positively influence on the host's adipose tissue development and related metabolic disorders. The beneficial effects on the host's metabolism promoted by prebiotics, probiotics, and synbiotics have been successfully demonstrated by several studies. However, further investigation is needed to fully explain the cellular mechanisms of action of probiotics and prebiotics on human health, and also to elucidate the relationship between microbiota and obesity etiology, using well-designed, long-term, and large-scale clinical interventions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Simbióticos , Humanos , Obesidade , Prebióticos
11.
AIDS Res Hum Retroviruses ; 35(2): 164-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30351194

RESUMO

Human multipotent mesenchymal stromal cells (MSCs) display immunoregulatory functions that can modulate innate and adaptive cellular immune responses. The suppressive and immunomodulatory activities of MSCs occur through the action of soluble factors that are constitutively produced and released by these cells or, alternatively, after MSC induction by stimuli of inflammatory microenvironments. However, to date the contribution of MSCs in the inflammatory microenvironment resulting from viral infection is unknown. In our study, we evaluated the MSC immunosuppressive effect on human T lymphotropic virus type 1 (HTLV-1) infected T lymphocytes. To evaluate if MSC immunoregulation can influence the proliferation of HTLV-1 infected T lymphocytes, we compared the proliferation of lymphocytes obtained from HTLV-1 infected and healthy individuals cocultured in the presence of MSCs. It was observed that the lymphoproliferative inhibition by MSCs on infected lymphocytes was similar compared to the cells obtained from healthy individuals. In addition, this suppressive effect was related to a significant increase of indoleamine-2,3-dioxygenase and prostaglandin E2 gene expression (p ≤ .05). Furthermore, the HTLV-1 pol gene was less expressed after coculturing with MSCs, suggesting that the MSC immunoregulation can have effective suppression on HTLV-1 infected T cells. In conclusion, this study suggests that MSCs could be involved in the immunomodulation of the HTLV-1 infected T lymphocytes.


Assuntos
Infecções por HTLV-I/imunologia , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Linfócitos T/imunologia , Adulto , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Linfócitos T/virologia , Proteínas Virais/genética
12.
Front Immunol ; 9: 2602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505303

RESUMO

Phase I/II clinical trials of autologous hematopoietic stem cell transplantation (AHSCT) have led to increased safety and efficacy of this therapy for severe and refractory autoimmune diseases (AD). Recent phase III randomized studies have demonstrated that AHSCT induces long-term disease remission in most patients without any further immunosuppression, with superior efficacy when compared to conventional treatments. Immune monitoring studies have revealed the regeneration of a self-tolerant T and B cell repertoire, enhancement of immune regulatory mechanisms, and changes toward an anti-inflammatory milieu in patients that are responsive to AHSCT. However, some patients reactivate the disease after transplantation due to reasons not yet completely understood. This scenario emphasizes that additional specific immunological interventions are still required to improve or sustain therapeutic efficacy of AHSCT in patients with AD. Here, we critically review the current knowledge about the operating immune mechanisms or established mechanistic biomarkers of AHSCT for AD. In addition, we suggest recommendations for future immune monitoring studies and biobanking to allow discovery and development of biomarkers. In our view, AHSCT for AD has entered a new era and researchers of this field should work to identify robust predictive, prognostic, treatment-response biomarkers and to establish new guidelines for immune monitoring studies and combined therapeutic interventions to further improve the AHSCT protocols and their therapeutic efficacy.


Assuntos
Doenças Autoimunes/terapia , Biomarcadores Farmacológicos/metabolismo , Biomarcadores/metabolismo , Transplante de Células-Tronco Hematopoéticas , Animais , Ensaios Clínicos como Assunto , Terapia Combinada , Humanos , Monitorização Imunológica , Guias de Prática Clínica como Assunto , Tolerância a Antígenos Próprios , Transplante Autólogo
13.
Front Immunol ; 9: 1689, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090100

RESUMO

Intestinal dysbiosis associated with immunological deregulation, leaky gut, bacterial translocation, and systemic inflammation has been associated with autoimmune diseases, such as type 1 diabetes (T1D). The aim of this study was to investigate the intestinal dysbiosis in T1D patients and correlate these results with clinical parameters and cytokines. The present study was approved by the Barretos Cancer Hospital (Process number 903/2014), and all participants have signed the informed consent in accordance with the Declaration of Helsinki, and answered a questionnaire about dietary habits. Stool samples were used for bacterial 16S sequencing by MiSeq Illumina platform. IL-2, IL-4, IL-6, IL-10, IL-17A, TNF, and IFN-γ plasma concentrations were determined by cytometric bead arrays. The Pearson's chi-square, Mann-Whitney and Spearman correlation were used for statistical analyses. Alpha and beta diversities were conducted by using an annotated observed taxonomic units table. This study included 20 patients and 28 controls, and we found significant differences (P < 0.05) among consumption of vegetables, proteins, milk and derivatives, spicy food, and canned food when we compare patients and controls. We detected intestinal dysbiosis in T1D patients when we performed the beta diversity analysis (P = 0.01). The prevalent species found in patients' stool were the Gram-negatives Bacteroides vulgatus, Bacteroides rodentium, Prevotella copri, and Bacteroides xylanisolvens. The inflammatory interleukin-6 was significantly increased (P = 0.017) in patients' plasma. Furthermore, we showed correlation among patients with poor glycemic control, represented by high levels of HbA1C percentages and Bacteroidetes, Lactobacillales, and Bacteroides dorei relative abundances. We concluded that there are different gut microbiota profiles between T1D patients and healthy controls. The prevalent Gram-negative species in T1D patients could be involved in the leaky gut, bacterial translocation, and poor glycemic control. However, additional studies, with larger cohorts, are required to determine a "signature" of the intestinal microbiota in T1D patients in the Brazilian population.

14.
Front Immunol ; 8: 1107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966614

RESUMO

Intestinal dysbiosis and metabolic endotoxemia have been associated with metabolic disorders, such as obesity, insulin resistance, and type 2 diabetes (T2D). The main goal of the present study was to evaluate the intestinal dysbiosis in Brazilian T2D patients and correlate these data with inflammatory cytokines and lipopolysaccharides (LPS) plasma concentrations. This study was approved by the Ethics Committees from Barretos Cancer Hospital and all individuals signed the informed consent form. Stool samples were required for DNA extraction, and the V3/V4 regions of bacterial 16S were sequenced using an Illumina platform. Peripheral blood was used to quantify inflammatory cytokines and plasma LPS concentrations, by CBA flex and ELISA, respectively. Statistical analyses were performed using Mann-Whitney and Spearman's tests. Analysis of variance, diversity indexes, and analysis of alpha- and beta-diversity were conducted using an annotated Operational Taxonomic Unit table. This study included 20 patients and 22 controls. We observed significant differences (P < 0.01) in the microbiota composition (beta-diversity) between patients and controls, suggesting intestinal dysbiosis in Brazilian T2D patients. The prevalent species found in patients' feces were the Gram-negatives Prevotella copri, Bacteroides vulgatus, Bacteroides rodentium, and Bacteroides xylanisolvens. The proinflammatory interleukin-6 (IL-6) was significantly increased (P < 0.05) in patients' plasma and LPS levels were decreased. We find correlations between the proinflammatory interferon-gamma with Gram-negatives Bacteroides and Prevotella species, and a positive correlation between the LPS levels and P. copri reads. The P. copri and B. vulgatus species were associated with insulin resistance in previous studies. In this study, we suggested that the prevalence of Gram-negative species in the gut and the increased plasma IL-6 in patients could be linked to low-grade inflammation and insulin resistance. In conclusion, the P. copri and B. vulgatus species could represent an intestinal microbiota signature, associated with T2D development. Furthermore, the identification of these Gram-negative bacteria, and the detection of inflammatory markers, such as increased IL-6, could be used as diabetes predictive markers in overweight, obese and in genetically predisposed individuals to develop T2D.

15.
Immunology ; 152(1): 1-12, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28556916

RESUMO

In humans, a complex interaction between the host immune system and commensal microbiota is required to maintain gut homeostasis. In this symbiotic relationship, the microbiota provides carbohydrate fermentation and digestion, vitamin synthesis and gut-associated lymphoid tissue development, as well as preventing colonization by pathobionts, whereas the host offers a niche and nutrients for the survival of the microbiota. However, when this mutualistic relationship is compromised and an altered interaction between immune cells and microorganisms occurs, the gut microbiota may cause or contribute to the establishment of infectious diseases and trigger autoimmune diseases. Researchers have made efforts to clarify the role of the microbiota in autoimmune disease development and find new therapeutic approaches to treat immune-mediated diseases. However, the exact mechanisms involved in the dysbiosis and breakdown of the gut epithelial barrier are currently unknown. Here, we provide a general overview of studies describing gut microbiota perturbations in animal models of autoimmune diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. Moreover, we include the main studies concerning dysbiosis in humans and a critical discussion of the existing data on the use of probiotics in these autoimmune diseases.


Assuntos
Doenças Autoimunes/terapia , Autoimunidade , Bactérias/imunologia , Disbiose , Microbioma Gastrointestinal/imunologia , Intestinos/microbiologia , Probióticos/uso terapêutico , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Intestinos/imunologia , Linfócitos T/imunologia , Linfócitos T/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...